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While you know how to derive these formulas or memorize the results, the following scenario may occur.
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Solution. Not much to worry here. What is missing from this sum compared to »_,_, k, which has

a known formula?
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so we are missing the number 1. Therefore, you can simply write

k=2 k=1
_ (n+1) 4
2
n?>+mn—2
2
(n+2)(n—1)

How do we even interprete this formula? Note that n+ 2 is no other than the first term plus the last
term in the summand, while (n — 1) is the number of terms. Therefore, to add consecutive integers,
we deduce that the sum should be

(1st term + last term) (number of terms)
5 .

This concept works also for the original formula for Y, _, k = @ (right?)
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Solution. Here, you should try converting to a case where the summand is k2 since you know
something about it. To go from k+ 1 to k, you are in fact shifting to the right, and thus, your index
must increase by 1 also, that is,
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Now, we need to check how many terms we are missing from the known formula )", _, k2. We note

that in 22221, we do not count the case of £k = 1, but we added a case of £k = n + 1, relative to
1



S n_, k% Therefore,
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Pretty ugly but you usually know what n is to compute the sum — or this should help you nail down

the expression for some area under the curve using n subintervals.




